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Laminar flow of an incompressible fluid past a bluff body: 
the separation, reattachment, eddy properties and drag 

By F. T. SMITH 
Department of Mathematics, Imperial College, London 

(Received 6 March 1978) 

The asymptotic theory for the laminar, incompressible, separating and reattaching 
flow past the bluff body is based on an extension of Kirchhoff's (1869) free-streamline 
solution. The flow field (only the upper half of which is discussed since we consider a 
symmetric body and flow) consists of two basic parts. The first is the flow on the body 
scale I * ,  which is described to leading order by the Kirchhoff solution with smooth 
inviscid separation, but with an O(Re-i%) modification to explain fully the viscous 
separation (here Re (> 1) is the Reynolds number). The influence of this Re-=% modi- 
fication is determined for the circular cylinder. The second part is the large-scale flow, 
comprising mainly the eddy and the ultimate wake. The eddy has length scale O(Re Z*), 
width O(Ref I*) and is of elliptical shape to keep the eddy pressure almost uniform. The 
ultimate wake is determined numerically and fixes the eddy length. The (asymptoti- 
cally small) back pressure from the eddy acts (on the body scale) both in the free stream 
and in the eddy, and it has a marked effect a t  moderate Reynolds numbers; combined 
with the Kirchhoff solution, it predicts the pressure drag on a circular cylinder accu- 
rately, to within 10 yo when Re = 5 and to within 4 % when Re = 50. Other predictions, 
for the eddy length and width, the front pressure and the eddy pressure, also show 
encouraging agreement with experiments and Navier- Stokes solutions at  moderate 
Reynolds numbers (of about 30)) both for the circular cylinder and the normal flat 
plate. Finally, an analysis in the appendix indicates that, in wind-tunnel experiments, 
the tunnel walls (even if widely spaced) can exert considerable influence on the eddy 
properties, eventually forcing an upper bound on the eddy width as Re increases 
instead of the O(l* Re)) growth appropriate to the unbounded flow situation. 

1. Introduction 
Over the years there have been many attempts a t  providing a theoretical descrip- 

tion, for high Reynolds numbers, of the two-dimensional laminar streaming motion 
of an incompressible fluid past a bluff body. For convenience, we shall confine our dis- 
cussion here to the symmetric flow problem, in which the body possesses an axis of 
symmetry which is aligned with the uniform stream at infinity, so that only the upper 
half of the flow field need be considered. Most of the attempts referred to above have 
recognized the fact that the inviscid attached flow solution bears no relation to the 
behaviour of a real fluid because of the contradiction that the associated boundary 
layer on the body almost inevitably approaches a spurious, and singular (Goldstein 
1948), separation ahead of the rear stagnation point; the only real exception to such a 
contradiction could occur if the body were very streamlined towards its rear and had a 
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trailing edge of vanishingly small angle (Roshko 1967 ; Professor K. Stewartson 1977, 
private communication). Accordingly, efforts have been concentrated on trying to 
deal with the separation phenomenon and/or with the eddy of circulatory flow be- 
tween separation and reattachment. Prior to a discussion (given below) of the separ- 
ation involved, it is convenient to consider the eddy models, many of which have aimed 
at  a turbulent flow description rather than the laminar flow theory which is our 
concern, and which we categorize into three broad types (a) ,  (b)  and (c), as follows. 

Type (a )  is an extension of the Kirchhoff (1869) free-streamline model, in which it is 
assumed that the eddy behind the body consists of nearly stagnant fluid a t  the same 
pressure as that of the undisturbed stream. This model is often called, somewhat 
misleadingly, ‘an infinite (or open) wake model’; but a more appropriate term is ‘a 
large eddy model’. For, in the extended Kirchhoff model, the eddy length and height, 
rather than being infinite, simply have the property that they are both much greater 
than the typical body dimension (l*, say), a property which is in fact not contrary to 
experimental and numerical experience (see below). The model has been considered by 
Squire (1934), Imai (1953), Kawaguti (1953) and, more fully, by Professor A. F. 
Messiter (private communications), Messiter (1975) and Sychev (1967). 

Type ( b )  is the free-streamline model, in which the eddy is again nearly stagnant 
but is not at the free-stream pressure. As a consequence the eddy is either of finite 
dimensions, O(Z*), or contains some anomalous features (as in the Riabouchinsky 
(1919) or Gilbarg & Serrin (1  950) proposals). Investigations of this model have been 
made by Woods (1955), Roshko (1954, 1955), Wu (1956, 1962), Lighthill (1949) and 
Southwell & Vaisey (1946). 

Type (c) contains all the models in which the typical eddy velocity is comparable 
with the undisturbed stream velocity UZ,  implying usually that the pressure at the 
eddy surface is not uniform. These models include the Prandtl-Batchelor eddy of 
constant vorticity (Batchelor 1956), the Foppl (1913) vortex model (see also Shair 
1963), the variable-pressure work of Woods (1955), the proposal by Grove et al. (1964) 
and Acrivos et al. (1965, 1968) of an eddy of finite width but great length (see however 
the appendix below), and the wake source models of Parkinson & Jandali (1970) and 
Kiya & Arie (1977) (see also Wu 1968, 1972; Birkhoff & Zarantonello 1957). 

None of the models of type ( b )  or (c) has proved entirely successful from the view- 
point of a rational, laminar flow, theory. Indeed the serious objections to types ( b )  
and/or ( c )  are manifold. First, experience from reliable experimental and numerical 
(Navier-Stokes) investigations (Grove et al. 1964; Dennis & Chang 1970) has shown 
that the eddy length grows, virtually linearly, with increasing Reynolds number Re, 
contrary to the postulates of models with finite eddies. Second, the velocities within 
the eddy do tend to be relatively small in practice. Third, the analytical problems posed 
by those models which assume (implicitly or otherwise) eddy velocities of the order of 
U*, are probably overspecified and insoluble. For the analyst is then left with the 
awesome task of ensuring that the eddy flow produces closed streamlines, that the 
eddy pressure balances that of the exterior flow at the dividing streamline, that 
the behaviour of the eddy near the inviscid breakaway point is consistent with viscous 
separation (see below), and that the drag on the body is only small. No flow solution 
satisfying all these requirements has ever been found. Fourth, there must be con- 
sistency between the inviscid description of breakaway of the dividing streamline 
from the body and the viscous account of separation. In  models with finite eddy 
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velocities this consistency requirement implies that the eddy flow itself must induce a 
secondary separation, at some distance from the main separation of the dividing 
streamline. While such secondary separation cannot be discounted, there is certainly 
no firm evidence in favour of its occurrence (in steady flow, a t  least). In  fact, all the 
relevant numerical and experimental evidence so far tends to support the view that 
only the single, main, separation occurs; that the approaching upstream boundary 
layer on the body is completely lifted away from the surface by this separation and 
then forms a viscous shear layer, and that, near the body a t  least, the eddy flow, being 
relatively slow, is simply entrained into the viscous shear layer surrounding the divi- 
ding streamline and is then swept downstream. Finally, a fifth objection is raised by 
Acrivos et al. (1965) concerning the pressure recovery in the wake. 

One may now be even more specific about the fourth point of the previous para- 
graph, concerning the need for reconciliation between the inviscid breakaway and 
the viscous separation. For a first (and, we suggest, the only) self-consistent account 
of the incompressible viscous separation involved here has only recently been found 
[F. T. Smith 1977, following Sychev’s (1972) proposal; see also Messiter & Enlow 
1973; Messiter 19751. This account is based on triple-deck theory (Stewartson 1974) 
and it explains how the attached boundary layer on the body upstream of the inviscid 
breakaway point separates abruptly in the neighbourhood of the breakaway point 
and then emerges from the separation zone as a free shear layer surrounding the 
dividing streamline. The account demands that, to leading order, the inviscid break- 
away must be of the smooth type, i.e. the dividing streamline must have only finite 
curvature at  the breakaway point. The account also demands that the perturbation 
to the inviscid flow field is O(Re-i%-) and that near the breakaway point the pertur- 
bation must exhibit a particular singularity, the exact form of which is specified by 
the triple-deck viscous separation [see F. T. Smith 1977; and (2.3a, b )  below]. 

The above self-consistent description of the separation and breakaway might be 
fitted into any of the eddy models (a ) ,  (b )  and (c )  in principle. But, given all the pre- 
viously mentioned serious objections to the overall models of types ( b )  and (c) ,  we 
attempt to provide in this paper a theoretical account of the entire high Reynolds 
number laminar motion past the bluff body based on the extended Kirchhoff model 
(a )  and on the triple-deck separation. It is found that a complete multi-structured 
description can indeed be made, both for the flow a t  finite distances from the body 
(the ‘ body-scale flow ’ of $ 2) and for the larger-scale motion comprising the eddy and 
the eventual wake ($3).  Comparisons of most features of the theoretical body-scale 
flow with experiments and Navier-Stokes solutions at  moderate Reynolds numbers 
strongly support the present approach (see $2.4, figures 3-5 and $$4 and 5 for the 
drag), while other features are, at  the least, readily reconcilable with the observed and 
calculated behaviour. Comparisons (in $3.3) of the larger-scale flow are even more 
encouraging (see figures 8-10), especially for the eddy length, which is predicted in 
$3.2,  and the near-eddy pressure, predicted in $3.1. In  particular, the theory here 
enables us to resolve the often-quoted discrepancies between observation and the 
Kirchhoff model per se as regards the drag on the body and the eddy pressure. For the 
lower-order effects greatly improve the theoretical predictions of both quantities, 
bringing the differences between theory and experiments or calculations to within 
about 10% at Reynolds numbers of the order of 30. The most important of these 
lower-order effects is the (asymptotically small) back pressure due to the eddy; in 
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$ 4  it is shown that this back pressure simply imposes a rescaling on the body-scale 
flow properties. The reason for the rescaling is that the back pressure is exerted uni- 
formly a t  large distances from the body rather than just within the eddy, a feature 
which is in contrast with the anomalous effects of back pressure in previous studies 
[see the eddy models of type ( b )  above]. Also, an analysis given in the appendix 
indicates that experimental measurements of eddy properties (e.g. eddy width or 
pressure) are significantly affected by the presence of confining walls even when the 
walls are widely spaced and that, therefore, theories (e.g. Acrivos et al. 1965, 1968) 
based on those experiments are inappropriate to the unbounded flow problem. The 
only doubt (see $3.1) about the overall model adopted here concerns the flow proper- 
ties near reattachment, where we propose a passive behaviour, similar to that of 
Burggraf (1975), Jenson, Burggraf & Rizzetta (1974), Smith & Duck (1977) and 
Professor K. Stewartson ( 1  977, private communication), instead of the backward- 
jet behaviour of Messiter, Hough & Feo (1973). A discussion is given in $5 .  

The motion is assumed to be laminar, steady and two-dimensional throughout. 
Also, the kind of bluff body we have principally in mind is one which is smooth except 
possibly for a trailing edge of finite angle, although the large-scale theory of fj 3 applies 
also to non-smooth bluff bodies, an extreme example of which is the broadside-on flat 
plate considered in $ 3.3. The Reynolds number Re is defined by 

Re = Uzl* /v*  ( B  I ) ,  (1 .1)  

where v* is the kinematic viscosity of the incompressible fluid, and we shall work with 
the non-dimensional velocities u and v in the x and y directions and the non-dimen- 
sional pressure p .  Here x, y, u, v and p have been non-dimensionalized with respect to 
I*, I*, U z ,  U z  and p*Uz2,  in turn, where p* is the fluid density and x denotes the 
direction of the undisturbed stream u = 1. The stream function is @, where 

= w / a y ,  

v = - a$/ax and @ = 0 on the body. The undisturbed stream is taken to be a t  zero 
pressure. 

2. The body-scale flow 
The 'body-scale flow' describes the motion at distances 0(1) or less from the body. 

We let q be t,he flow speed (u2+v2)f .  The body-scale flow then has @, u, q and p 
generally O(1) [(@, u, q, p )  = ( @ ~ , u l , q l , p ~ ) + o ( l ) ,  say], except in the viscous layers 
or reversed flow zones referred to below. 

M7e consider the various regions of the body-scale flow in $$2.1-2.3 below, showing 
that a complete self-consistent account seems possible. Then $2.4 compares the 
body-scale flow obtained from the present asymptotic theory with Navier-Stokes 
solutions and experiments a t  moderate Reynoldsqmbers. 

1 

2.1. The mainjow regions (I, 111, V) 
The Kirchhoff (1869) free-streamline model adopted here assumes that the free 
streamline @ = 0 = f? breaks away from the body a t  an unknown position 8 = 8sep > 0, 
where 8 and f? signify respectively distances along and normal to the body surface and 
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U =  

FIGURE 1. (a) The overall structure of the body-scale flow, and co-ordinates. (b )  The flow 
structure near separation. 

free streamline @ = 0, with 8 = 0 a t  the front stagnation point. The model postulates 
further that q1 = 1 a p ,  = 0 on the free streamline downstream of the breakaway 

streamline [described by y = D,(x) - to(  l)] and the line of symmetry (y = 0) ,  

(see figure 1). B e h i d  7 the breakaway, in the near-eddy region I1 between the free 

$, = u1 = q1 = p ,  = 0, 

so that only a relatively slow flow is expected there (see $2.3 below). The solution of 
V2@, = 0 for the inviscid potential flow in region I, outside the near-eddy I1 and the 
viscous layers 111 and I V  (figure I), is then fixed by the condition of smooth separation 
imposed on the pressure along ,2 = 0: 

A 

(2 . la )  J p ,  - k1(Osep-6)+  as 8 - + 8 ~ ~ ,  
p 1  = o for P > PSep.  

Here k, is a (positive) constant not known in advance. The required behaviour (2 . la )  
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serves to fix both the dividing-streamline shape y = D,(x) and the value of 8sep, in 
particular (while if (2.1 a )  is not imposed, p ,  has a square-root singularity a t  breakaway 
and the breakaway is inconsistent with viscous separation; F. T. Smith 1977, p. 446). 
From (2.1 a) ,  if the distance of the free streamline $ = 0 from the surface is 

S(8)  = Sl (8 )  + O ( l ) ,  

where a is the radius of curvature of the body a t  8 = psep. In  general, the pressure 
gradient 8pJ88 at the surface is favourable throughout 0 6 8 < oBep, so the O(Re-4) 
boundary layer I11 (figure 1) stays attached for 8 < 8sep, its scaled skin friction 
au(8, 0)laN (where & = Re-iN in 111) tending to a positive O(1) value h as 8 4 8 ~ ~ .  
The viscous separation near 8 = osep then occurs abruptly, within a triple-deck 
structure V. It is provoked by an O(Re-h) perturbation in the main flow field I: 

($> u, q7p) = ($19 ul, q l ? P l )  + Re-i'0($27 u2, qZ,p!2) + * * . 9  (2.2) 

where V2$, = 0 and the combined flow field (2.2) satisfies the Kirchhoff conditions on 
the body and free streamline. The perturbation in (2.2) remains small throughout I 
(and, indeed, forces a relative error O(Re-i'i) through the entire flow field); but the 
triple-deck structure V governing the abrupt separation near 8 = 8sep demands the 
local behaviour, along $i = 0, 

( 2 . 3 ~ )  

where a + 0.44 (Smith 1977). Hence the O(Re-i'c) perturbation dominates the inviscid 
behaviour close to separation. The increasingly adverse pressure gradient which it 
promotes as $-+ 8&, is exactly consistent with the requirements of triple-deck viscous 
separation (F. T. Smith 1977), and the triple-deck account explains the singu- 

fluid passes through separation. We move on, therefore, to the remaining features of 
the body-scale flow. 

larity in the inviseid behaviour (2.3a) is smoothed out [over a distance ti? (Re-#)] as the 

2.2. The $ow just outside the triple-deck separation (regions V, VI) 
At distances just greater than O(Re-8) beyond the separation, the entire viscous layer 
I11 emerges from the triple deck as a free shear layer I V  of thickness O(Re-4) centred 
around the dividing streamline 

S w $aAZRe-i%(@- oBep)g, (2.3b) 

the form ( 2 . 3 b )  following from ( 2 . 3 ~ ) .  The velocity a t  the upper edge of the free shear 
layer is effectively the free-stream velocity, while a t  the lower edge the velocity is 
effectively zero. The shear layer therefore entrains fluid, at  a rate given by 

$la+,- N - C, h*Re-4(8- 8sep)a (2-4) 
for 0 < 8-Osep < 1,  where C,, = 1.2521 ... . 

Apart from the triple deck, the local adjustment near separation is then completed 
by two inviscid zones: VI, lying beneath the shear layer, between the triple deck and 
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the near eddy 11; and VII, lying above the shear layer, between the triple deck and the 
main flow field I. The first zone encountered (VI) is necessary to achieve inter alia a 
gradual modification of the dividing-streamline shape, from the form (2.3 b )  emerging 
from the triple deck to the form (2.1 b )  holding a t  the start of the main flow field I .  
From (2.1 b)  and (2.3b),  VI is set up when (@-@se,) is O(Re-*). Therefore let 

e = e,,, + Re-48, 

in VI, where 8 and n denote distances along and normal to the body surface respect- 
ively (so that 8 = @ and n = rZ. for @ < @,,,). Then, in VI, n = Re-bn, from ( 2 . l b )  
and (2.3b), and to leading order 

($, q , p )  = (Re -h$A ,  Re-’qA, n.g + Re-’pA), (2.5) 

where rE is an undetermined o(1 )  pressure constant (see (3.2b) below). The orders of 
magnitude in (2.5) stem from the behaviour 

( 2 . 6 ~ )  

(2.6b) 

$K - Re-g[Re*(O- Oaep)]8 ( 2 . 6 ~ )  

of the flow solution below the shear layer immediately downstream of the triple deck 
(see F. T. Smit,h 1977, pp. 449-450). The controlling equations in VI are the inviscid 
boundary-layer equations 

(2.7a) 

where 0 < 8, < a3 and 0 < nA < x ~ ( 8 ~ ) .  Here nA = #A(@,) defines the shape of the 
dividing streamline through zone VI. The anticipated boundary conditions for (2.7 a )  
are 

$ A =  0 at nA= 0,  (2.7b) 

+A = - c, e l  A)  at n, = s A ( e A ) - ,  ( 2 . 7 ~ )  

$, N - C, 6:%Ah,/SA(6,) ’ (2 .7d)  
as B A - + O + ,  (2.7e) p A  - - (9Ci/8az) A4834 

(2.7f 1 8, N &A9& A 

Here (2.7b, c )  ensure tangential flow at the body surface and the entrainment con- 
dition (2.4) at the dividing streamline, while (2.7d, e )  match zone VI  to the triple deck 
B a t  8, = O +  [from (2.6)].  Finally, (2 .7f ,g)  join the dividing streamline to its up- 
stream shape (2.3b) and to its downstream shape (2 . lb ) .  The required solution of 
(2.7a-g) is 

$A = - C, A*nA/{gaA98i + 81 /2a) ,  ( 2 . 8 ~ )  

qA = - C, A+/{g&el+ e f / 2 a > ,  (2.8b) 

PA = -Mi, ( 2 . 8 ~ )  

S,  = +A%& + (2a)-105. (2.8d) 
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/ 

FIGURE 2. The streamlines (solid lines) in the adjustment zone VI  just beyond separation. 

The adjustment from (2 .3b )  to ( 2 . l b )  is therefore achieved through zone VI  and the 
flow in VI  is entirely reversed. The motion in zone VI is sketched in figure 2. Moreover 
we note for later use that, first, (2.8) implies that as the near-eddy flow I1 is ap- 
proached [S, -+ O(Re*) formally] the velocity and pressure variation become O( Re-4) 
and O(Re-l) respectively. Second, the backward-facing viscous subIayer between zone 
VI and the wall is bound to remain attached, since the pressure gradient in (2.8) 
accelerates the sublayer towards the triple deck; this sublayer then continues into a 
sublayer of the triple deck (F. T. Smith 1977, p. 450). 

The other main adjustment zone VII, outside the shear layer, occurs when 2 and 
8- Psep are both O(Re-i%) and is of a character similar to that of VI. Its purpose is to 
adjust the potential flow from the triple-deck form [dominated by ( 2 . 3 ~ )  when 

to the dominant Kirchhoff form (2 .1  a )  which holds for Re-20. < 10- 08epl < 1.  The 
governing properties in V I I  are all linear, however, and in particular the pressure 
adjusts linearly, from ( 2 . 3 ~ )  to ( 2 . l a ) ,  through zone VII, as does the free-streamline 
shape, from (2 .3b )  to ( 2 . l b ) .  

2.3. The shear layer and the near eddy (regions IV, 11, VIII)  
The free streamline @ = 0, y = D,(x), determined by the leading-order potential flow 
problem in I, develops the well-known property of a parabolic growth downstream: 

D,(X) N bx3 as x-+m (2.9) 

b = (4Cgm/7+ (2.10) 

The constant b here is related to the leading-order drag C,, on the whole body, in the 
form 

necessary for global conservation of momentum in the potential flow. Also, in general 
b > 0 since the pressure p l  acting on the body is non-negative and so produces a 
positive O( 1) drag CDm. Hence, as the eddy length is large (see Q 3 below), the eddy 
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width, given by the continuation of (2.9), must also be large. Again, for P $ 1, with 

(2.11) 

where P and $ are polar co-ordinates (x = ?cos$, y = ?sin$). So the velocity and 
pressure throughout the flowfield fall towards their freestream values and a match 
with the free stream seems possible (see $3) .  

As well as the growth downstream of the near-eddy width (2.9), there is also the 
growth downstream of the shear layer IV surrounding the free streamline to contend 
with. During the body-scale flow, layer IV, being the continuation beyond 8 = 8sep of 
the original attached boundary layer 111, has thickness O(Re-*), so that 6 = Re-tN, 
say, 4 = Re-$$ and p < 1 in IV. This layer is governed by the boundary-layer 
equations 

Y > SW, 

I p 1  N 4bP-g sin *$, 
+1 N y-bP&cos+$, 

and the boundary conditions 
q - + l , O  as N++co .  

(2.12a) 

(2.12 b, c) 

Here (2.12b, c )  match the shear-layer flow to the flow in the inviscid regions I and 11. 
The starting profile (at 8 = 8&,) for IV is that of the original boundary layer I11 but 
with a (8- @sep)* singularity emanating from the triple deck. Far downstream (8 4 co) 
the Chapman form (Lock 1951) 

( 2 . 1 3 ~ )  

where G’” + QGG” = 0, G’(m) = 1, G’( - 00) = 0, (2.13 b) 

is expected. Here G ( q )  has the property G( - co) = - 1-24 ( = - i t ) ,  in line with the 
fluid entrainment by the shear layer throughout the range 8sep < 8 < co [so that, if 
$(8, - 00) = -a(@), then d2,/d8 > 0 for all 8 > osep and 2(8sep) = 01. 

In  the near-eddy I1 we suggest that the flow is provoked by the above O(Re-4) 
entrainment into the shear layer IV. Therefore y% is O(Re-t) in I1 and, since x and yare 
O ( l ) ,  u and v are also O(Re-4) in 11. Hence the pressure variation is O(Re-l). Notice 
that these orders for the velocity and pressure variation coincide with the orders 
implied by $2.2 [see also (2.16) and (2.17) below]. We write ( @ , u , q , p )  = ( R e d $ ,  
Re-hZ, Re-$4, Re-lp + nE) in the near-eddy, the small pressure constant nE arising 
from the match with the adjustment zone VI [see (2.8) and (3.2b) below]. The motion 
in the near-eddy is controlled essentially by the inviscid equations ( i? .V)a  = -Op 
and d iva  = 0. Therefore 

v2J = - f ( JL  ( 2 . 1 4 ~ )  

where the vorticityfis an unknown function of 8, The boundary conditions on ($ are 

$ = O  at y = O  a n d a t  n = 0 ,  (2.14 b) 

J = -S(e) a t  y = D,(z)-, ( 2 . 1 4 ~ )  

the former being required for symmetry and for tangential flow a t  the body and the 
latter to account for the entrainment necessary to maintain the shear layer IV sur- 
rounding the free streamline y = D,(z). To satisfy the entrainment condition in 
( 2 . 1 4 ~ )  there must be a small but non-zero supply of fluid from downstream (z-+m), 

A 
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since the near-eddy is not closed on the body scale [x,y = O(l)], from (2.9). This 
necessity leads to the discussion (in $ 3 below) of the complete eddy and the reattach- 
ment which must ensue far downstream; but here we may infer that the necessary 
supply is given by a (weak) uniform streaming of the form 

G w  - F  (constant), $ w -Ey for x 9  1 with 0 < y < bxa, (2.14d) 

where, to conserve mass, bF = 1.24. The complete solution of ( 2 . 1 4 ~ )  is then fixed by 
the constraints (2.14b, c, d ) ,  the last of which implies that 

f= 0, (2.15) 

so that the near-eddy is a potential flow region. 
Finally, the match between the near-eddy I1 and the adjustment zone VI near 

6 = 6,,, may be verified. For, if we use the similarity co-ordinate i j  = n/(O - 
which is O(1) in the near-eddy I1 as O-+8se , ,  then the entrainment condition ( 2 . 1 4 ~ )  
becomes 

A h  

$ = - C, A+O- Osep)+ + O(O - Os,,)+ a t  i j  = 1/2u + &kl(e - Os,,)& + O(O - OSe,) 
(2.16) 

near 8 = 6&,, from (2.4) and (2.1b). Also, $ = 0 at i j  = 0, from (2.14b). Hence the 
near-eddy solution is described by 

A 

(2.17) 
A 

as S-+S,+,, with i j  = O(1). Here (2.17) satisfies the governing equation ( 2 . 1 4 ~ )  with 
(2.15) locally, and the leading term in (2.17), of order (O-8sep)4, matches identically 
with the leading-order term emerging from zone VI (as O A - + c o ) ,  from ( 2 . 8 ~ ) .  Hence 
the slow flow in the near-eddy is consistent with the faster reversed motion closer to the 
separation point. In general the near-eddy motion is expected to be entirely reversed. 
As the fluid in the near-eddy approaches the separation point, i t  speeds up [giving a 
uniform velocity profile, from (2.17)] in order to conserve the mass flux entrainment in 
the narrowing gap between the shear layer and the body. The majority of the near- 
eddy fluid enters the shear layer IV and is swept downstream before the adjustment 
zone V I  is reached; the remaining fluid passes through the adjustment zone VI and 
then either enters the shear layer or continues (with increasing speed) towards the 
separation point to maintain the faster reversed motion at  the downstream end of the 
triple-deck flow. This accelerating reversed flow forces the slow reversed boundary 
layer VI I I  [lying between the body and the near-eddy and having thickness O(Re-a)] 
to become increasingly attached and increasingly thin as the separation point is 
approached, while the final turning of the remaining reversed flow is achieved within 
the triple deck, of course. [By contrast, if the reversed velocities in the near-eddy were 
substantial, e.g. O(1) as in a Prandtl-Batchelor eddy, then the near-eddy would have 
to decelerate as separation was approached and a secondary separation, of the reversed 
boundary layer VIII, would be inevitable.] 

The proposed structure of the body-scale flow is now complete. On the face of it, the 
above account contains no inconsistencies, and the remaining difficulties concern 
only the larger-scale flow properties. Before considering the latter (in 8 3)) we compare 
in $2.4 the above body-scale flow theory with observed and calculated flows at  
moderate Reynolds numbers. 
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FIGURE 3. The skin friction 7 = (2  Re)-f&/an against 8, for the circular cylinder. The curve 
LIMIT is the boundary-layer solution from the Kirchhoff slip velocity, with TD denoting the 
(asymptotically abrupt) effect of the triple deck a t  8 = &,, = 55". The dotted carves are 
O(Re-i'*) modified boundary-layer solutions with Re values as shown. The curves LIMIT 20, 
LIMIT 50, LIMIT 300 include the effects (4.2), (4.3) of the back pressure (3.2b) when Re = 20, 50, 
300 respectively. The dashed curves give the Navier-Stokes solutions of Dennis & Chang (1970, 
for Re = 20, 35, 50) and the (nearly steady) solution of Patel (1976, Re = 300). The circles are 
from the experiments of Dimopoulos & Hanratty (1968, Re = 105). 

2.4.  Solving the main body-scale flow problems, and comparisons with experiments and 
Navier-Stokes solutions 

The particular bluff body considered here is the circular cylinder x2 + y 2  = a2. First, 
the solution for the attached boundary layer I11 upstream of the separation point was 
calculated. The slip velocity induced by the leading-order free-streamline flow in I, 
with the smooth separation condition ( 2 . 1  a ) ,  was deduced from Brodetsky's (1923) 
highly accurate approximation to the solution, and the finite-difference solution for 
the boundary layer was then marched forward from the front stagnation point 
(0 = 0)  to  the onset of separation (8 = Bsep = 5 5 O ,  from Brodetsky 1923 : see also Woods 
1955). Two different grid sizes were used to check the accuracy, and the numerical 
solutions are believed to be accurate to at  least three decimal places in the skin friction 
7 = &(0,0) /aN.  The solution is presented in figure 3. It gives the value 

Next, we obtained the modified inviscid flow field I, described by the first two terms 
of ( 2 . 2 )  together with the stipulation (2.3a) or ( 2 . 3 b ) .  Again the solution was based on 
Brodetsky's (1923) conformal-mapping approach. To include the singularity ( 2 . 3  b ) ,  
which implies infinite curvature of the free streamline, involves but a small change in 
Brodetsky's analysis. Thus his work remains unaltered until his equation ( 4 )  is 
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reached: then his (4) (which he applied to ensure smooth separation) is replaced by the 
condition 

1+Al--A3+A5- ... = -0.44Re-hh8, (2.18) 

which ensures ( 2 . 3 ~ )  b )  a t  separation. Here and below we adopt Brodetsky’s notation 
without alteration. To satisfy (2.13) we take [instead of his (7)] 

A ,  = -l+a,+E, A, = a,+a,, A ,  = u3+a5, ..., (2.19) 

where E is the right-hand side of (2.18). Note that his (7) contains a misprint: a2 should 
read a3. Now, to obtain a first approximation to the modified solution, we let all the 
constants ai be zero except a,. The constant a, is then determined by equating the radii 
of curvature of the body, both at  its front stagnation point and at  the separation point, 
to the (unknown) radius of the cylinder a (in the conformal-mapping method here a is 
not known in advance). This condition requires that 

Since 

2 
= a. - - 4 exp ( - 1 + +a1 + E )  

1 - E -  2a, 1 - -s+ 2a, 
(2.20) 

(2.21) 

(2.20) yields two equations for the unknowns a, and a, given h = 0 . 7 2 ~ 4 .  In practice 
it proved more convenient to start a calculation by specifying the value of a,+$s, 
then to solve (2.20) for 2a, + E and a, which also yield the values of a, and E ,  and finally 
to use (2.21) to deduce the corresponding Reynolds number Re. By varying the speci- 
fied value of a, + Qs, we were then able to obtain the modified free-streamline solution 
for a wide range of Reynolds numbers. Once a,, E and a have been determined, the slip 
velocity outside the boundary layer I11 follows from Brodetsky (1923) [the equation 
immediately after his (5): he uses r = l/q], while 

CD = n( 1 + 4A1)’) (2.22) 

esep = -A ,++A, -*A,+ . . .  . (2.23) 

We note in passing that the requirement (2.20) produces a body whose radius of 
curvature between 8 = 0 and 8 = esep deviates from that of the circular cylinder by 
about 34 04 at most (Brodetsky 1923) when E = 0 (&-+a). For the finite values of E 

and Re that were used in the modified free-streamline solutions, this deviation was 
increased, but it never exceeded 5 yo. Also, an alternative, and more rigorous, treat- 
ment of the modified free-streamline flow may be adopted by taking E < 1 in (2.20) 
and (2.21). This yields the results (excluding terms of order e2) 

(2.24) 

Finally, a second approximation to the modified solution may be found by taking 
both a, and a, to be non-zero in (2.19), which enables the radii of curvature of the 
body a t  8 = 0, a t  8 = Bsep and at  an intermediate point to be set equal to a. Certainly, 
when E = 0, this yields a more accurate approximation than before, the body’s 
radius of curvature varying by at  most a fraction of 1 % between 8 = 0 and 8 = Bsep 

I a, = 0.0574 - 0.229 E ,  CD = m(0*5287)2 [1 + 1.455 €1, 
u = 1.794 + 2 * 3 4 2 ~ ,  Bsep = 0.9617 - 0-820s. 
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(see Brodetsky). The analysis for non-zero values of E is similar to that of (2.20)- 
(2.24) and involves solving 

4exp ( - 1 ++a,+ E +&a,) = 2 
1 - E + 2a, - 2a, 1-6- 2a,- 2a3 

where (2.21) still holds. I n  particular, fore < 1 we find 

12.26) i U, = 0.0585 - 0.2996 E, 

u = 1-760+2.221~, 
U, = - 0.0083 - 0.0871 6, 

OSep = 0-9599-0-8116~, 
C, = ~(0.52925)~ [1+ 1.325~1, 

excluding O(@) effects. 
The (modified) boundary layer I11 was then re-integrated forward from 0 = 0,  with 

the modified slip velocity determined for a number of values of the Reynolds number. 
Strictly, in the limit as e-+ 0 (Re+co), where the asymptotic theory is valid, the effect 
of the O(Re-iLc) perturbation in the slip velocity is asymptotically small for 

o G < esep 
and the skin friction is almost unaltered from its previous form until the triple deck is 
reached. Moreover, a linearization akin to that of (2.24) or (2.26) is valid in I11 to deal 
with the small perturbation. However, in practice it is found that for moderate 
Reynolds numbers the O(Re-iLc) disturbance is not unsubstantial, so it seems more 
sensible to re-solve the full boundary-layer equations for the modified 

[0( 1)  + O(Re-A)] 

flow field rather than solve the linearized equations for the O(Re-h) disturbance: the 
two procedures are identical in the limit as Re -+ co, in any case. 

The numerical solutions for r for the modified boundary layer? are presented in 
figure 3, together with the original unmodified solutions and results from experiments 
and Navier-Stokes solutions. The variables have been rescaled from those above in 
order to base the Reynolds number and the lengths on the cylinder radius. In  figure 3, 
except near the front stagnation point, where the agreement is excellent, the unmodi- 
fied solution for r underestimates the experimentally observed and the numerical 
Navier-Stokes values (although, incidentally, the experimental results are themselves 
out of line with the Navier-Stokes solutions, possibly because of unsteadiness in 
practice). The inclusion of the O(Re--A) effects, however, reduces this discrepancy, 
but generally only by a fairly small amount for the moderate values of Re a t  which 
reliable experimental and numerical results are available. The above discrepancies 
are not surprising when one views the pressure distribution on the cylinder (figure 4), 
for both the modified and the unmodified free-streamline solutions for the pressure 

t Note that, for the O(  1) (rather than asymptotically small) values of E used in the boundary- 
layer calculations, the skin friction r always tends to zero ahead of the proposed separation 
position 0 = Oeeep, because of the increasingly adverse pressure gradient as 8 nears Oaeep. This 
feature is in line with the theory of $2.1 and F. T. Smith (1977, p. 448), where E -+ 0 and the true 
separation occurs within the triple deck. Also, the Goldstein (1948) singularity is approached a t  
the onset of the false separation where r -+ O +  . 
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FIGURE 4. The pressure distribution on a circular cylinder. ---, Navier-Stokes solutions of 
Dennis & Chang ( 1970) for Re values shown ; , 0, experimental values of Grove et al. (1 964) 
for Re = 20, 88.5 respectively; LIMIT is the Kirchhoff solution; curves marked 19.97, 106.1, 
1409 are the modified solutions at those Re values; curves LIMIT 50, LIMIT 35, LIMIT 20 give 
the effects [see (4.2), (4.3)] of the back pressure ( 3 . 2 6 )  when Re = 50, 35, 20 respectively. 

give less favourable pressure gradients overall (for 0 < 0 < esep) than those of experi- 
ment and Navier-Stokes solutions. On the other hand, a more encouraging feature is 
the very close agreement as far as the initial variation of the pressure (and hence 7) 
near the front stagnation point is concerned. By contrast, further round the cylinder 
it is difficult to decide between the free-streamline pressure (and skin friction) distri- 
butions and those of the triple deck (F. T. Smith 1977) when comparisons are being 
made with experiments or Navier-Stokes solutions: for instance, a distance of unity 
on the triple-deck scale corresponds to an angle of 60" around the cylinder when 
Re = 50. This largeness of the separation regions partly explains the discrepancies in 
figures 3 and 4, we believe. Another, related, source of difficulty in comparisons is 
that even terms of the relatively small order O(Re-6) can give a substantial contri- 
bution to certain quantities a t  moderate Reynolds numbers. This aspect is demon- 
strated in figures 3 and 4, which, in anticipation of the results ( 3 . 2 b ) ,  (4.2) and (4.3) 
below, show the effects of the theoretical O(Re-4) surface pressure nE in the near-eddy 
I1 beyond separation. The inclusion of this O(Re-3) effect in fact improves the agree- 
ment between the theory and experiments or calculations more than does the O(Re-A) 
effect. Another demonstration of the practical importance of the O(Re-4) terms rather 
than the O(Re-1%) terms will be given in $ 5  below (see figure 11). 

A final, and encouraging, comparison is made in figure 5 between the values of the 
pressure a t  the front stagnation point according to the present theory and from 



1.6 

1.4 

B 1.2 
4 

1 .o 

0.8 

Laminar incompressible flow past a bluff body 

\d" \ 
\ X 

I I I 1 
2s so IS I00 

Re (=f R )  

185 

FIGURE 5. The front-stagnation-point pressure pPATp ( =  2p at  n = 0 = 0) as a function of Re. 
Q, Navier-Stokes solutions of Dennis & Chang (1970); x , 0 ,  experimental values of Grove 
et al. (1964) and Homann (1936) respectively; LIMIT gives the prediction (2.27); AFIT gives 
(for comparison purposes) the prediction of attached flow inviscid theory. 

experiments (Grove et al. 1964; Homann 1936) and Navier-Stokes solutions (Dennis & 
Chang 1970; Takami & Keller 1969). The present theory yields the asymptote 

Q(0)  = 1 + 5*692/R, (2.27) 

where R = 2Re is the Reynolds number based on the cylinder diameter. Dennis & 
Chang's ( 1  970) Navier-Stokes calculations predict a numerical coefficient of 6.09 in 
(2.27)) while Takami & Keller's (1969) predicted value is 5.985. By comparison, the 
attached inviscid flow model gives a coefficient of 8. Our result (2.27) is in excellent 
agreement with Dennis & Chang's calculations, even when Re = 10 (see figure 5 ) ,  while 
the experimental variation also seems fairly in keeping with (2.27). Also, the agree- 
ment is slightly improved if we include the O(Re-i%-) modification, which yields 

2p(O) = 1 + (5*692/R) (1  + 0.0194R-1%). (2.28) 

Only (2.27) is shown in figure 5. 
Considered in toto, the comparisons in figures 3-5 would seem to be not discouraging: 

the agreement a t  the front stagnation point (figure 5) or near it (in figures 3, 4) is 
excellent, while the discrepancies elsewhere (in figures 3, 4) are readily reconcilable 
with the multi-structured nature of the asymptotic flow model (see also 3 4). We turn 
now to a discussion of the broader-scale flow, to attempt to complete the flow picture 
for high Reynolds numbers. 
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3. The eddy properties, the reattachment and the wake beyond the eddy 
3.1. The eddy and reattachment 

The two major steps in attempting a broad description of the complete eddy of 
circulatory flow behind the body involve the determination of the eddy length and its 
shape (see also Sychev 1967; Messiter 1975). First, the length of the eddy must 
be O(Re) to satisfy a condition of momentum conservation. This condition is the 
result 

CDrn = 2j( 1 - u)  dy 

stemming from integration of the Navier-Stokes momentum equations (see Batchelor 
1967, p. 351). The integral in (3.1) extends across the half-wake y 2 0 far down- 
stream of the eddy and it defines the ultimate wake displacement, which must be 
finite since C,, is finite (from 5 2). Such a finite ultimate displacement can occur only 
if the wake displacement immediately behind the eddy is also finite. So, assuming that 
there is no great change in the velocity profile as the detached shear layer passes 
through reattachment to emerge at  the start of the wake, we may conclude that the 
shear-layer displacement is also finite [i.e. that @ is O( l)]  within the shear layer just 
ahead of reattachment. But, from (2.13a), this demands that x = O(Re) before 
reattachment. Hence the eddy length is O(Re). (A precise determination of the length is 
given in 8 3.2 below.) 

Second, the following argument may be advanced concerning the eddy shape. The 
property (2.9) suggests that the width of the eddy is O(ReJ), if a direct match is to be 
achieved between the complete eddy flow and the body-scale flow. Therefore the typical 
eddy slope is small and O(Re-4). Outside the eddy the motion is then governed by the 
inviscid equations, on streamwise and transverse length scales O(Re), and is a small 
[O(Re-t)] perturbation of the uniform stream since the eddy acts effectively as a 
slender body. Hence pressures O(Re-3) [in line with (2.1 l)] are provoked when x and 
y are O(Re) and, for a general eddy shape, this leads to a non-uniform pressure distri- 
bution O(Re-4) just outside the eddy. The pressure changes by less than O(Re-3) 
across the shear layer [which bounds the eddy and reduces the velocity from O(1) 
outside the eddy to o( 1)  inside], so, from the balance of momentum, the velocity u is 
O(Re-f) within the eddy. Then conservation of mass demands that 11. = O(Rei) in the 
eddy. But in the shear layer 11. is only O(1) [see previous paragraph and (2.14d)], as it 
is also in the body flow ($2) and near the line of symmetry y = 0. Consequently, there 
is no mechanism for entrainment of this O(Re)) mass flux. So, to a large extent, the 
flow in the eddy has a closed streamline pattern and rotates clockwise between the 
shear layer and the line of symmetry. 

Given that the length and thickness of the eddy are O(Re) and O(Re4) respectively, 
the only real chance of a breakdown in the above argument lies in the assumption that 
the O(Re-4) pressure at the shear layer is non-uniform. For if, and only if, the (slender) 
eddy shape is elliptical then the O(Re-3) eddy pressure is uniform. In fact, from 
linearized potential flow theory the pressure, on the O(Re) length scale, is given by 

( 3 . 2 ~ )  
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to leading order [W denotes the real part, and 2 = X + i Y ,  where (2, y) = R e ( X ,  Y ) ] .  
Here the eddy ellipse has the form Y = ax*( L - X)4, so that LRe  is the unknown eddy 
length (see $3 .2 ) )  and B = bL-4 to match with the initial form (2 .9 ) .  Moreover, from 
( 3 . 2 ~ )  the uniform pressure in the eddy, and hence in the near-eddy I1 of $2, is 

i.e. 
-BRe-:, 

p (  = nE) = - (4CD,/nL)*Re-4+o(Re-h) in I1 (3 .2b )  

from (2 .10) .  Again, we note that ( 3 . 2 ~ )  matches the large-length-scale pressure with 
that of the body-scale flow, (2 .11) ,  as required. 

The second possibility ( b )  above, that of an elliptical shape, is the one we favour in 
this paper and is an attractive one, of course. For the elliptical shape preserves the 
spirit of the body flow structure of $ 2, in that the velocity within the eddy is small and 
is only O(Re-4) if the eddy flow is driven entirely by the entrainment into the shear 
layer [in which case a match with the near-eddy behaviour of (2 .14d)  is obtained]. 
Moreover, the eddy’s shape is then completely (and quite simply) determined once its 
length LRe  has been found (see $3 .2  below), since the starting form (2.9) may be used 
to fix the elliptical eddy’s width. In particular, from (2 .9 ) ,  the maximum half-width 
H of the eddy is given by 

H = (C,, L/n)&Reh + o(Re4) (3%) 

if possibility ( a )  holds. The possibility ( b )  is analogous to the uniform-pressure eddy 
model successfully adopted by Burggraf (1975) and Jenson et al. (1974) .  In  contrast, 
the first possibility (a) ,  that of an O(Re-4) pressure variation in the eddy, almost 
certainly involves a numerical treatment of the nonlinear eddy flow. The possibility 
(u) would tend to move the eye (or node) of the eddy more towards the eddy centre 
however, whereas in the case of possibility (b )  the eye could (but does not necessarily 
have tot)  lie asymptotically close [on the O(Re)  length scale] to the reattachment 
point. But, apart from that feature, the existence of the recirculating eddy implied by 
possibility (a)  appears to serve no real purpose, since the eddy velocities are too small 
to affect the fluid entrainment by the shear layer. Comparisons between the possi- 
bility ( b )  and experimental or calculated eddy flows will be presented in § 3.3 below. 

In either case, on the eddy length scale x = R e x ,  where X is finite, the flow field 
divides into four basic zones (see figure 6). Zone (i) is the outer inviscid zone of linear- 
ized potential flow; (ii) is the viscous shear layer of thickness O( l ) ,  from ( 2 . 1 3 ~ ) ;  (iii) is 
the eddy of width O(Re4) between zone (ii) and the line BC, where B contains the body 
flow and C the reattachment; and zone (iv) is the viscous wake of thickness O( 1 )  (see 
$ 3 . 2 )  downstream of C .  Zone (ii) is controlled by the viscous-shear-layer problem 
( 2 . 1 2 ~ - c )  again, and we may assume its solution to be given by ( 2 . 1 3 ~ )  throughout 
0 < x’ < L, i.e. 

But the main properties of zones (i) and (iii) depend on which, if either, of the possi- 
bilities (a)  and (a) introduced above is correct. It is impossible to decide conclusively 
between those two (a.nd other) possibilities without a detailed knowledge of the flow 
properties near the reattachment point of the shear layer (at C in figure 6 ) .  At C the 

t For instance, a pressure variation greater than O(Re-’) but less than O(Re-*), consistent 

$ = XtG(?)[$ = i?/X*] in (ii). (3 .3 )  

with possibility (a), would keep the eye towards the eddy centre, as in (a). 
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FIGURE 6. The large-scale structure, comprising the linearized potential flow ( i ) ,  viscous shear 
layer (ii), eddy (iii) and ultimate viscous wake (iv). The point B contains the body-scale flow and 
C is the reattachment point. 

shear layer (ii) splits into two, the fluid below the dividing streamline $ = 0 being 
reversed in order to supply the eddy flow (iii), while the remainder of the shear layer 
($ 2 0) continues into the wake (iv). The point a t  which this reversal takes place 
( X =  L )  is determined by momentum conservation (see $3.2) .  The actual means for 
this reversal are not yet clear, however: to date, the only consistent description found 
for a large-scale reattachment similar to ours appears to be that of Messiter et a l .  (1 973)) 
and their approach applied in the present context implies that a backward jet emanates 
from C, the velocity and thickness of the jet both being O( 1). The existence of such a 
backward jet is inconsistent with our overall flow model, but an alternative description 
of reattachment to that of Messiter et a l .  (1973) is not forthcoming yet. 

While a complete account of the reattachment and eddy flows would be most 
desirable, instead we are led to postulate here that an alternative description of 
reattachment exists? which is consistent with our overall flow model [including the 
possibility ( a ) ]  above. Given postulate ( b ) ,  and assuming that the reattachment process 
preserves the vorticity of the incoming shear-layer profile through C ,  we can now move 
on to determine one of the major remaining unknowns, the eddy length L. 

3.2. T h e  wake beyond reattachment, and the determination of the eddy length 
Immediately downstream of the reattachment at C ,  a velocity profile u = U,,(y), 
$ = Y , ( y )  emerges, with y = 0(1) and the properties U,(CO) = 1, Y w ( 0 )  = 0 and 
U,(O) > 0. This profile forms the starting profile for the (finite thickness) viscous wake 
[(iv) in figure 61 downstream of the eddy. 

In  (iv), $, u and y are 0(1 ) ,  x = R e x  with X finite and X > L, but p = O(Re-4) 
from $3.1.  Hence the wake is controlled by the boundary-layer equations 

a$ au a$ au a2u 

ay’ ax ax ay ay2 
u = -  u - - - -  =-  

with initial conditions 
u = Uw(y) ,  $ = Y w ( y )  at X = L+ 

( 3 . 4 a )  

(3 .4b )  

t Another point of view, similar to one adopted by Messiter et al. (1973), is to regard the flow 
structure (if-(iv) as a reasonable first approximation, with the influence of a backward jet to be 
incorporated later to improve the approximation. Such a view seems optimistic in our problem, 
however. 
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and boundary conditions 
9 = 0 = au/ay a t  y = 0, (3.4c) 

u + l  as y-tco. ( 3 . 4 4  

The solution of (3.4a-d) depends on the initial profile in (3.4b), which has to be fixed 
from the reattachment properties considered in 0 3.1. Far downstream, however, as 
X -+ co, the following asymptotic form is to be expected: 

where r^ = y/X3 and g‘(@) = P d e x p  ( -as2), from (3.4a, c, d) .  The constant ~3 = g(co) 
(effectively, the ultimate wake displacement) is dependent upon the full solution to 
( 3 . 4 ~ 4 ) .  In  fact, since 

,B = Jm (1 -u)dy for s I, 
0 

from (3.1) we have 
cDm = 2P, 

so that, since GID, is given (from the body flow in region I in §2) ,  (3.6) determines P, 
which in turn determines the value of L through the effect of L on the initial profile 
(3.4b). 

From the assumption made at the end of 83.1, that vorticity is conserved through 
the reattachment, we may now propose (cf. Messiter et al. 1973; Burggraf 1970, 
1975; Jenson et al. 1974) that the initial profile in (3.4b) is described by the 
shear layer form (ii) a t  X = L-, since the latter form does preserve the vorticity. 
Thus we have 

Y w ( y )  = L*G(y/Lt) (for y > 0) (3.7) 

from (3.3). The controlling influence of L on Yw is clearly exhibited by (3.7). Now, 
however, L can be factorized out of the wake calculation by setting 

( $ 9  u, x, y )  = ( L V ,  u, LZ,  L%, (3.8) 

for then @(X,y) and G ( X , i j )  satisfy ( 3 . 4 ~ )  and (3.4c,d) again, with S a n d y  replaced by 
x and g, but the initial conditions 

_ -  

- 
$ = G(ij), E = C’@) at X = 1 (3.9) 

[with G(0)  = 0 now imposed] hold in place of (3.4b). Integration of (3.4a, c, d )  for 
X > 1 can therefore proceed without prior knowledge of L. Let us denote the factor- 
ized displacement lim [g- $@, co)] by $@). Then (3.9) and (3.6) imply that 

‘g- m 

and 
(3.10) 

A central-difference numerical solution was obtained for the factorized problem of 
the wake, (3.4a, c, d )  with (3.9). A complication arises a t  the start of the integration 
(x+ 1 + ), where there exists a double structure (cf. Goldstein 1930). First, for 

0 < w - 1  -g 1 
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FIGURE 7 .  The numerical solutions for the factorized displacement thickness p and centre-line 
velocity ?&a, 0) of the ultimate wake (iv) [see (3.4a, c ,  d ) ,  (3.9)]. The dots give the starting 
behaviour (3.15) and the dashes give the large-xasymptote [see (3.5)] based on the value 

$(a) = 0.43. 

the solution when i j  is O(X - 1)1 (g = (x - l)&j, say) may be expanded in the form 
- 

(3.11) 
?) = (E- l ) ~ c o ~ + ( x - l ) B , ( ~ ) + O ( X - l ) ~ )  
5 = co + (X - l ) q ( q )  + O(X - I) ,  

where, from (3.4a),  (3.9) and (3.4c), 

(3.12) 

Here we have used the feature G(y) FS cog+ $c1ij2+ .. . for g < 1, where c,, = 0.587 and 
c1 + 0.21 are given constants, from (2.13). Also, we know that G - ij-p, for jj $ 1, 
where Po = 0.533 [ = P(O)]. Second, when i j  is O( 1) and 0 < X - 1 < 1, 

- I $ = G ( g )  + (X - 1 )  G,@) + . . . , 
u = G’@) + (X - l)G;(y) + . . .) - (3.13) 
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FIGURE 8. The eddy length as a function of Reynolds number. &‘or the circular cylinder: 0, , 
A, calculated results of Dennis & Chang (1970), Takami & Keller (1969), Kawaguti & Jain 
(1966) respectively; x , experimental results of Acrivos et al. (1968); LIMIT 1 gives the pre- 
diction (3.16) and LIMIT 2 is (3.16) with an origin shift in Re. For the normal flat plate: 0, from 
Batchelor (1967) and Acrivos et al. (1968); LIMIT 3 gives (3.16). 

where G,(O) = c l /co  to  match (3.13) with (3.11). Substitution into ( 3 . 4 ~ )  yields 

(3.14) 

The solutions in (3.14) and (3.12) give the properties 

for 0 < X - 1  6 1 (3.15) PCX 1 = $0 + (1 - 1) [;Po - C,/cg] + o(E - 1)  
%X, 0) = co + 2c1(7fc0)-4(X - 1)4 + o(X - 1)t 
- 

for the wake displacement and centre-line velocity initially. To accommodate this 
singular structure in the numerical scheme we adopted Smith’s ( 1  974) procedure of 
using a two-region numerical approach, a t  the start of the integration in X > 1 ,  
marching in uniform steps of (X- l)*. The solutions are presented in figure 7 and 
agree well with (3.15) initially. The similarity form (3.5) is approached ultimately 
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FIGURE 9. The eddy width as a function of Reynolds number. For tho circular cylinder: 0, 
Dennis & Chang's (1970) Navier-Stokes solutions; 0 ,  experimental values of Grove et ol. (1964) 
corrected for wind-tunnel interference (see appendix) ; (2, uncorrected experimental values; 
-- , prediction ( 3 . 8 ~ ) .  For the normal flat plate: 0, from Batchelor (1967) and Acrivos et al. 
(1968); ---, from ( 3 . 2 ~ ) .  

downstream (figure 7) and the calculations gave the value P(m) = 0-43. From (3.10), 
therefore, the formula 

L = 1.36C5, (3.16) 

determines the eddy length ( =  LRe). 

3.3. Comparisons of eddy length, width and pressure with experiments and 
Navier-Stokes solutions 

In figures 8 and 9 the prediction (3.16) for the eddy length and the result ( 3 . 2 ~ )  for the 
maximum eddy width are compared with experimental or ca.lculated values, for the 
circular cylinder and the broadside-on flat plate in particular. The Reynolds number 
Re here is based on the cylinder radius or plato half-width. 

First, figure 8 plots the eddy length as a function of Reynolds number Re for the 
circular cylinder. The prediction (3.16) (which yields L = 0.34 since C,, = 0.50) shows 
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FIGURE 10. Variation of the eddy pressure with Reynolds number, for the circular cylinder. n, 
calculations of Dennis 8r. Chang (1970); 0 ,  (2 ,  experiments (Grove et al. 1964; Acrivos et al. 
1968), with and without wind-tunnel correction respectively (sec appendix) ; LIMIT, the 
prediction (3 .2b ) .  

very good agreement with the experimental and calculated Navier-Stokes variations; 
indeed, if the origin for the Reynolds number is slightly shifted then (3 .16)  fairly 
accurately follows the practical and calculated values down to Reynolds numbers as 
low as 20. Second, figure 8 also presents eddy-length results for the broadside-on flat 
plate (for which C,, = 0.88). Few experimental or calculated results for laminar flow 
seem to be availablefor comparison; those shown in figure 8 have been read from plate 4 
of Batchelor (1967) and from the experiments of Acrivos et al. (1968).  The agreement 
with (3.16) (which yields L = 1.055, since C,, = 0.88) is again good, even though the 
value of Re is as low as 5 in the experiments. We note in passing that the large-scale 
theory of tjtj3.1 and 3.2 does include the cases of non-smooth bluff bodies like this flat 
plate, since the theory relies only on the initial existence of a shear layer dividing the 
free stream from the virtually stagnant eddy beneath. Thus (3 .16)  is a universal 
formula for any bluff-body flow. 

Third, figure 9 concerns the maximum width of the eddy. The experimental results 
therein have been read from the figures of Grove et al. (1 964), Batchelor (1967, plate 4 )  
and Acrivos et al. (1968), while the Navier-Stokes results have been read from the 
figures of Dennis & Chang (1970).  For the circular cylinder the prediction ( 3 . 2 ~ )  (which 
yields H = 0.233 Re*) for Re > 1 is not inconsistent with the calculated widths, 
particularly if allowance is made for an origin shift in the value of Re. The experimental 

7 F L U  92 
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values of the eddy width are themselves at  variance with the Navier-Stokes solutions, 
owing possibly to unsteadiness or to wind-tunnel interference. Professor D. W. Moore 
kindly suggested that an investigation of tunnel-wall effects would be desirable and an 
analysis (given in the appendix) indicates that the tunnel walls used in the experi- 
ments did exert a significant influence on the observed values of eddy width, as figure 9 
shows. In  the results for the broadside-on flat plate also shown in figure 9 the corn- 
parison with ( 3 . 2 ~ )  (which yields H = 0.544 Red) is again fairly good. 

Lastly, in figure 10, experimental and calculated values of the pressure at the rear 
stagnation point of the circular cylinder are plotted against the Reynolds number, 
along with the prediction (3.2b) [which gives p = - 1.37 Re-d+o(Re-d) from (3.16)]. 
The agreement is very encouraging indeed. As we shall see in $$a and 5, the rear 
stagnation point and near-eddy pressure of (3.2 b ) ,  while an order of magnitude 
smaller than the pressure [O(l)]  acting on the body upstream of separation, neverthe- 
less still provides a most significant contribution to the drag on the body at  moderate 
Reynolds numbers. Also, the work in the appendix indicates that, again, the experi- 
mental values of eddy pressure are significantly affected by the presence of tunnel 
walls. One example of the wall effect is presented in figure 10; other examples are 
presented in the appendix (figure 12-14). 

4. The effect of the O(Re-4) eddy pressure on the body-scale flow 
Returning to consider the body-scale flow, we wish now to include the influence of 

the O(Re-4) eddy pressure (which is clearly of importance in practice: see figure 4). 
From (3.2a) the pressure behaviour required in the outer reaches of the body-scale 
flow is 

p N +ia(L/z)d + . . . - E 2  Re-d + o(Re-4) (4.1) 

for IzI 9 1,  where z = z+iy.  Here the leading term matches with (2.11), but the 
O(Re-4) term gives the predominant effect of the large-scale flow of $ 3  on the body- 
scale flow of § 2. We notice that this ' back-pressure ' term is present uniformly at large 
distances in the body-scale flow; it does not act solely in the eddy (cf. Roshko 1954, 
1955; Riabouchinsky 1919; Gilbarg & Serrin 1950; and others). 

The modifying effect of the back pressure may be incorporated rationally and quite 
simply into the original body-scale flow of $ 2 as a small perturbation. For its presence 
means that the body-scale flow is subjected to an effective free-stream pressure (i.e. 
for 121 -+a, but (21 + I )  of n, rather than the true free-stream pressure (holding for 
121 % 1) of zero. Similarly the free-stream velocity for the body-scale flow is effectively 
1 - nE rather than 1, because of the small velocity increase produced by the existence 
of the large-scale eddy. Hence an effective rescaling of the flow variables of $ 2 is pro- 
duced, in the sense that the values of p and q determined in-52 are to be re-interpreted 
as the values of (p - rE)/(  1 - nE)2 and q / (  1 - n,), from the non-dimensionalization 
introduced in $1.  [We stress that, here and elsewhere, we are excluding the small effects 
due to boundary-layer and shear-layer displacement or to the adjustments near 
separation.] So, if the flow variables of $ 2 are now given the subscripts K ,  the actual 
pressure and speed p and q are given by 
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Again, the skin friction r (and hence the value of A )  determined in $ 2 must be multi- 
plied by (1  -nE)a to incorporate the back-pressure effect, and R e  also suffers a re- 
scaling. Thus 

It is a simple matter, therefore, to re-interpret all the solutions of $ 2  in order to take 
account of the main influence of the large-scale flow of 8 3. 

The rational rescalings of (4.2) and (4.3) have dramatic effects on the body-scale 
flow solutions at  moderate Reynolds numbers, as figures 3 and 4 demonstrate for the 
circular cylinder. Thus in figure 4, for R e  = 50, say, the theoretical pressure (4.2) 
follows very closely the distribution of the Navier-Stokes solutions up to the onset of 
separation; through separation the triple-deck solutions of F.  T. Smith (1977) then 
yield fairly close agreement with the calculated forms [the value 2h = 1.8 used by 
Smith (1977) was extracted from the Navier-Stokes solutions and should be replaced 
by 2h = 1.44 ( 1  - nE)#, but this replacement alters his comparisons only marginally] ; 
finally the eddy pressure (3.2b) agrees well with that of the Navier-Stokes solutions 
near the rear of the cylinder. Again, the skin-friction prediction undergoes a substantial 
alteration (figure 3) because of the back-pressure effect (4.3) and the theory now falls 
very much in line with the Navier-Stokes solutions. 

We re-emphasize that many previous studies (Riabouchinsky 1919; Gilbarg & 
Serrin 1950; Roshko 1954, 1955; Parkinson & Jandali 1970; Kiya & Arie 1977; 
Birkhoff & Zarantonello 1957) have been based (wrongly, we believe) on the belief that, 
the back pressure acts only within the eddy, whereas our approach shows that the 
back pressure also acts on the free-stream conditions as far as the body-scale flow is 
concerned. 

r = ( ~ - T ~ ) $ T ~ ,  R e  = ( l -nE)Re , .  (4.3) 

5. Further comparisons and discussion 
Two criticisms which in the past have often been levelled a t  the (extended) Kirch- 

hoff model of the body flow may now be answered. The first criticism is that the model 
underestimates the observed values of the near-eddy pressure. The answer is pro- 
vided in figure 10, which shows that the lower-order terms in the asymptotic expansion 
(of which the Kirchhoff solution forms the leading term in the body-scale flow) pro- 
duce contributions which, even a t  moderate Reynolds numbers, agree very well with 
the observed values. In  fact, the present theory leads to a new, rational, interpretation 
of the role played by the back pressure; for, in contrast with previous studies, this work 
shows that not only is the back pressure asymptotically small but also, on the body 
scale, it acts with in  the free stream as well a s  within the eddy. The true free-stream con- 
ditions are attained only on the much larger length scale of the eddy flow. 

The second major criticism of the Kirchhoff model is that it badly underpredicts the 
observed drag. Again, the answer is provided by the lower-order terms in the asymp- 
totic expansion, as follows. For the circular cylinder ( 9 + y 2  = 1) ,  to calculate the 
theoretical pressure drag CDp, first we include both the major body-scale flow terms 
C,, + O(Re-ixa) determined in $ 2.4 and the near-eddy pressure contribution from 
( 3 . 2 b )  (which gives the surface pressure between the rear stagnation point €' = 180" 
and the separation point 0 = €'sep = 55'). The result is presented in figure 11 (a )  and 
compared with Dennis & Chang's (1970) calculated values. The agreement is very 
encouraging. For, although at R e  = 50, say, the Kirchhoff model per  se predicts only 

7-2 
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about 65 yo of the calculated pressure drag, the O(Re-4) contribution from the near- 
eddy pressure raises the prediction to within 4 yo of the calculated value ! An alterna- 
tive approach suggested by $ 4 is to include the back pressure as a rescaling effect (as in 
figures 3 and 4), implying that the Kirchhoff pressure drag C,, is multiplied by 
(1  - 7-rE)2. Again the agreement so obtained (figure 1 1  a )  is remarkably good. The total 
drag C,, obtained by adding to C,, the friction drag C, from the modified boundary- 
layer solutions of $2.4, is given in figure 1 1  ( b ) ,  along with calculated and experimental 
values. In  the curve LIMIT 2 in figure 11 (b ) ,  the back pressure mE is included only 
wit.hin the eddy (as in the curve LIMIT 2 in figure 11 a) .  Here again the inclusion of the 
O(Re-4) effects, i.e. both C, and the near-eddy pressure (3.2b), serves greatly to 
improve the drag prediction, from 47-4 % [for the O( 1)  terms alone] to about 85 yo 
[for the terms O( 1) + O(Re-i%) + O(Re-4)] of the observed or calculated values at 
Re = 50. In the curve LIMIT 3 in figure 11 ( b )  the rescaling effects of (4.2) and (4.3) are 
adopted, both in C, and in C,, (as in the curve LIMIT 3 of figure 11 a).  The differences 
between the theory and experiments or Navier-Stokes solutions are again about 15 yo 
a t  Re = 50. 

Some other important features of the bluff-body flow have been equally, or even 
more, supportive of the extended Kirchhoff model. Examples are the comparisons of 
eddy length and front-stagnation-point pressure in figures 5 and 8 .  Also, although by 
contrast some discrepancies do appear to show up initially in other aspects such as 
the skin-friction and pressure plots in figures 3 and 4 (except near the front stagnation 
point), these discrepancies also can be ascribed to lower-order effects (see, for example, 
the back-pressure effects in figures 3 and 4). It is hoped that the same explanation will 
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FIGURE 11. (a) The dependence of the p%ssure drag Cop on Re, for the circular cylinder. LIMIT 
1 is the Kirchhoff value (Brodetsky 1923), LIMIT 2 includes the extra effect of both the O(Re-i%) 
terms and the eddy pressure (3.2b), LIMIT 3 includes the rescaling effects (4.2) and (4.3),  and the 
open squares are the numerical results of Dennis & Chang (1970). ( b )  The dependence of the 
total drag CD on Re, for the circular cylinder. n, 0.  the steady Navier-Stokes solutions of Dennis 
& Chang (1970), Takami & Keller (1969) respectively; 0, the (nearly steady) numerical solutions 
of Son & Hanratty (1969), x , experimental results of Tritton (1959). LIMIT 1 is the Kirchhoff 
value (Brodetsky 1923); LIMIT 2 includes the extra effect of O(Re-i%) terms and of the eddy 
pressure and friction drag; LIMIT 3 includes the O(Re-4) effects (4.2), (4.3) of the back pressure 
(3.2 b) .  

apply to the position of the separation point, where the predictions in (2.24) or (2.26) 
are in poor agreement with the observed or calculated values; it is noteworthy in this 
context that the free-streamline model does give excellent predictions of the separ- 
ation point, as well as the drag, in internal flows (see Smith 1979; Deshpande, Giddens 
& Mabon 1976). 

We may now deal with a third criticism made of the present theoretical model. This 
criticism is that, if the relative error in the theory is of order Re-i%, then the theory 
cannot be relevant at the moderate Reynolds numbers for which steady laminar flow is 
possible. The comparisons in figures 3-4 and 8-1 1 and the formulae (2.24)) (2.26) and 
(2.28) are enough to  silence this third criticism, we suggest. For, although Re-il. is not 
a small number there, the coefficients of the Re-iLc terms are so small as to make the 
O(Re-iA) contributions almost negligible (even when Re = 10, say). Indeed, the 
O(Re-i'c) contribution is much less important practically than the O(Re-4) contri- 
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butions, as figures 4, 10 and 11 show. Thus the asymptotic theory does appear to be 
relevant a t  moderate Reynolds numbers, giving good predictions for the most im- 
portant flow properties: the drag, eddy length, eddy width, the eddy pressure and the 
front-stagnation-point pressure. The sole remaining doubt in the theory concerns the 
motion near reattachment ($3.1).  Like Jenson et al. (1974) and Burggraf (1975), we 
propose a passive behaviour there, with the flow reversal dominated by the necessary 
entrainment into the shear layer. 

Finally, the work in the appendix leads to the conclusion that the presence of 
confining walls in wind-tunnel experiments produces a substantial distortion of the 
eddy properties even when the walls are far apart. Thus, for example, the present 
theoretical prediction ($ 3), of an unlimited growth (a Rei) of the eddy width as Re 
increases, and the experimental observations (Grove et al. 1964; Acrivos et al. 1965, 
1968), of an upper bound on the eddy width, are reconcilable [see figure 9 above and 
figure 12 and equation (A 13) below] since the observed behaviour is largely a direct 
consequence of the presence of the confining walls. Similarly, the experimental obser- 
vation of a non-zero limit for the eddy pressure, as Re increases, is a direct result of the 
flow confinement [as figure 10 above and figures 12-14 and equation (A 14) below 
suggest] rather than a feature of the unbounded flow problem. Hence any theory 
based solely on the above experimental results, and not compensating for the wind- 
tunnel effects, is bound to be inappropriate for the unbounded flow problem, we 
believe. In  particular, almost all the fundamentals of the theory of Acrivos et al. 
(1965, 1968) can be explained in terms of the distorting influence of confining walls on 
the present model [figures 12-14 and equations (A 13) and (A 14) below]. We conclude, 
therefore, that the Acrivos et al. (1965, 1968) theory is not appropriate to the un- 
bounded flow problem. 

After the completion of the present work the author received copies of Sychev’s 
(1967) and Messiter’s (1975) papers, kindly supplied by Professor A. F. Messiter and 
Mr J. H. B. Smith respectively. Both papers contain material and viewpoints having 
much in Common with $$3,1 and 3.2. In articular, as Professor Messiter (private 
communication) pointed out, Sychev (1967) also proposed the elliptical eddy and 
determined its length. Sychev’s eddy-length calculation [based on the momentum 
deficit integral of (3.4a), without calculating the whole wake solution] is more direct 
than that of 3 3.2 and yields the result p(m) = 2c, = 0.42. The ensuing alterations in 
the formulae for L, Hand zE are fairly slight, however, and disturb the comparisons in 
figures 8-1 1 only minimally. Messiter (1975) also made a number of other intriguing 
speculations. More recently, Messiter (1  978) has reviewed many aspects of separation 
and eddies, and J. H. B. Smith (1977) and F. T. Smith (1978) have examined the separa- 
tion of a three-dimensional vortex sheet from a smooth surface, again coming essentially 
to the viewpoint of Sychev (1972) and Smith (1977) of incompressible separation. 

P 

I am very grateful to Professor A. F. Messiter and Mr J .  H. B. Smith for their 
constructive comments on this paper, and also to Professor A. Acrivos, Professor 
S. C. R. Dennis, Professor A. F. Messiter, Professor D. W. Moore, Professor N. Riley, 
Mr J .  H. B. Smith and Professor K. Stewartson for informative and stimulating dis- 
cussions on various aspects of the bluff-body problem. In particular, Professor D. W. 
Moore is thanked for emphasizing the desirability of an investigation of wind-tunnel 
effects (see appendix). 
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Appendix. On the effects of confining walls 
An examination of the possible effects of confining, wind-tunnel, walls on the 

theoretical flow pattern seems called for. We consider a wide tunnel, aligned with the 
uniform stream and of width 2h Re much greater than the body dimensions but still 
comparable with the dimensions of the large-scale flow of 5 3. 

To leading order the influence of such confining walls is to restrict the domain of the 
linearized potential flow in zone (i) outside the eddy (figure 6). The flow problem in 
(i) may be stated in terms of the disturbance stream function where 

$ = Y Re + Re-*@-, + o(Re*) 

in (i). Thus @-, satisfies Tagl = 0 together with the boundary conditions 

+ 1 = 0  at Y = h  ( - c o < X < c o ) ,  (A 1 )  

$1=0  at Y = O  for X < O  or S > L ,  (A 2) 

a@-,/ay = &  a t  Y = 0 for 0 < X < L, (A 3) 

@ l + O  as [Xl-+co, (A 4) 

where -a^ Re-4 ( = nE) is the unknown constant eddy pressure. Also, to match with the 
body-scale flow (2.9)-(2.11) we require 

- - b ( X 2 +  Y2)*cos (+#) as ( X ,  Y)+  ( 0 , O ) .  (A 5 )  

It is convenient to work in terms of the modified complex potential 

W(Z) = (bl + i$-, -a, 
where is the disturbance velocity potential and k? = ( X  + i Y )  - $(L + ih). By 
symmetry the domain of interest may then be confined to the semi-infinite strip 
9 ( Z )  < 0, IY(Z)] < &h (here 4 denotes the imaginary part), with the symmetry 
condition a$-,/aX = 0 along W ( Z )  = 0. We let A ,  B, 0, D and E denote the points 
z = - co - *hi, - i L  - &hi, 0 - &hi, 0 + &hi and - co + *hi respectively and map the 
interior of the strip ABODE to the upper half of the 5 plane by the conformal map 

5 = sin (nZ/ih). (A 6) 

The points A ,  B,  0, D and E map to the points A‘, B’, 0’, D and E‘ on the real 5 
axis, where (A’, B’, 0’) D’, E’)  = (-co, - K ,  - 1, 1 ,  co) and K = cosh (nL/2h). 

The W plane may also be mapped to a half-plane. For if W = $+i$ then the flow 
field is the semi-infinite strip 2 c ,  --ah < 3 6 0 ,  where c is an arbitrary potential 
constant. The points in the W plane corresponding to A ,  B ,  0, D and E are, respect- 
ively, A” = co + Oi, B” = c + Oi, 0” = c -pahi, D” = c -&hi and E” = co -ahi, where 
0 < ,u < 1 and -p&h is the unknown value of at 0. The mapping 

[=  -sin [- n -  (w-c++&hi)] 
ih& 



200 P. T. Smith 

1.0 - 

I 1 I 1 I 
0 0.2 0.4 0.6 0.8 1 .o 

hlL 
FIGURE 12. The dependence of the relative eddy pressure z E / n s ,  and relative eddy width H / H ,  

on the ratio (tunnel half-width)/(eddy length) = h/L,  according to  (A 9), (A 11). 

then takes the flow field to the upper half of the c plane, the points A", B", 0", D" and 
E" mapping to the points = - co, - I, p, 1 and co on the real c axis, or A", B", 0", 
D" and E", respectively. Here /3 = - cos (pn). 

Finally, the 5 and [planes are related by the mapping 5 = d [ +  6, where, to identify 
the points A', B', O', D' and E' and A", B", 0", D" and E" respectively, the constants 
d and 6 satisfy d+6 = 1, 6p+6 = - 1 and -6+6 = - K .  In  terms o f 2  and E ,  there- 
fore, we have the flow solution 

where the constant B is determined from the condition (A 5 ) ,  giving 

The eddy shape, Y = Re-hSE(X), say, follows from (A 8) by working out the value of 
-$1 along BO. Hence 

s E ( X )  -- ha ?T c08-l - ( q + c o s h  F))]. 
Also the maximum width of the eddy occurs at X = #L and is 
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FIGURE 13. Comparisons between theoretical [-, from (A 9)] and experimental (0 ,  from 
Grove et al. 1964) eddy pressures when Re = 87.5, for various ratios k / L  [= 0.0336 (tunnel 
width)/(cylinder diameter)]. The dashed line gives the theoretical result for unbounded flow, 
( 3 . 2 b ) .  

For a given tunnel half-width h and Reynolds number Re the confined flow is there- 
fore determined. Solution curves for H and nE as functions of h/L are drawn in figure 
12. A check on (A 9)-(A 11)  confirms that as h/L-tco ( K - J  1)  the ideal, unbounded, 
situation of Q 3.1 is retrieved, with H / H ,  N 1 - &(?~L/4h)~  and 

n E / n E m  N 1 +&(nL/2h)', where H ,  and ~ T E ~  

denote the values of H and nE in the unbounded flow (of QQ 3 and 4). We turn now to 
comparisons with circular-cylinder experiments conducted in wind tunnels by Grove 
et al. (1964; see also Acrivos et al. 1965, 1968). Their eddy shapes (see their figures 
10-13) were obtained for a value of the ratio (tunnel width)/(cylinder diameter) of 5. 
As we have shown, the primary important parameter is instead the ratio of the tunnel 
half-width to the eddy length, i.e. h/L. The first comparison is given in figure 13, 
where for a fixed value of Re the pressure at  the rear stagnation point, i.e. nE in (A 9)) is 
found to be broadly in agreement with the experimental values for various (tunnel 
width)/(cylinder diameter) ratios. In  particular, it  is found that the presence of the 
confining walls is responsible for about 75 yo of the difference between experiment and 
unbounded flow theory when the (tunnel width)/(cylinder diameter) ratio is 10 and for 
60-70 yo when this ratio is 20. The second comparison made concerns the eddy pres- 
sure nE for a fixed (tunnel width)/(cylinder diameter) ratio and various Reynolds 
numbers, and is shown in figure 14. The agreement with the experimental results is 
again fairly satisfactory. The third comparison has already been made, in figure 9, 
where the influence of the confining walls [in (A 1 l)] is shown to induce a substantial 
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FIGURE 14. The eddy pressure as 8 function of Re for a given wind tunnel [with (tunnel width)/ 
(cylinder diameter) = 201. C, experiments (Grove et al. 1964); x , experiments (Acrivos et al. 
1965); - , present theory [equation (A 9)]; ---, unbounded flow theory [ ( 3 . 2 b ) ,  included for 
comparison purposes]. 

effect on the maximum eddy widths, bringing the experiments much more into line 
with the (unbounded flow) theory and hence with the Navier-Stokes solutions of 
Dennis & Chang. The effects of the confining walls account largely for the observed 
tendency (Grove et at. 1964; Acrivos et al. 1965,1968) for the eddy width to level out as 
Re increases. Indeed, for a fixed tunnel half-width h Re = g, say, the levelling-out is 
bound to occur as Re increases, according to (A 10) and (A l l ) ,  since the governing 
parameter is h/L = $ / L  Re, where L = 0.34 for the circular cylinder. So, as Re in- 
creases, h/L  + 0 and from (A 10) the eddy shape formally acquires the form 

for 1 < < LRe, and 0 c X c L, while the maximum eddy width becomes 

H = +b(&)* for 1 < $ < LRe. (A 13) 
Both the results (A 12) and (A 13) are independent of the Reynolds number. So, for a 
given wind tunnel and cylinder, the ultimate trend as Re increases is a levelling-out of 
the Hvs.  Re graph, in keeping with the experiments, whereas in the unbounded 
situation the growth H cc Re* is appropriate, as the comparisons with the Navier- 
Stokes solutions in figure 9 verify. A similar levelling-out can be seen in the variation 
of the eddy pressure rE as we let Re increase but keep the tunnel half-width fi fixed. 
For, from (A 9), 

nE = -4(7r/$)*b for 1 < 6 < LRe, (A 14) 
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so again the ultimate trend is towards a plateau value (figure 14) in contrast with the 
decay nEcx Re-4 appropriate to the unbounded situation (see figure 10). We may 
conclude therefore that the theory of Acrivos et al. ( 1  965, 1968), which is founded on 
the wind-tunnel experiments of Grove et al. and Acrivos et al. (1965,1968) and assumeR 
O(1) values for nE and H ,  is not appropriate to the unbounded flow problem. Its 
features are almost all due to the presence of the confining tunnel walls [as in (A 13) 
and (A la)]. 

Finally, one notes that the body-scale flow also is probably rather strongly affected 
by the confining walls (see Grove et al. 1964, figures 10-12, plate 2), that the body 
shape probably influences the confined flow of (A 1)-(A 11)  in practice (Grove et al., 
figures 10-12), and that the boundary-layer displacement at the tunnel walls would 
also tend to suppress the growth of the eddy width. 
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